(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
h(z, e(x)) → h(c(z), d(z, x))
d(z, g(0, 0)) → e(0)
d(z, g(x, y)) → g(e(x), d(z, y))
d(c(z), g(g(x, y), 0)) → g(d(c(z), g(x, y)), d(z, g(x, y)))
g(e(x), e(y)) → e(g(x, y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(z0, e(z1)) → h(c(z0), d(z0, z1))
d(z0, g(0, 0)) → e(0)
d(z0, g(z1, z2)) → g(e(z1), d(z0, z2))
d(c(z0), g(g(z1, z2), 0)) → g(d(c(z0), g(z1, z2)), d(z0, g(z1, z2)))
g(e(z0), e(z1)) → e(g(z0, z1))
Tuples:
H(z0, e(z1)) → c1(H(c(z0), d(z0, z1)), D(z0, z1))
D(z0, g(z1, z2)) → c3(G(e(z1), d(z0, z2)), D(z0, z2))
D(c(z0), g(g(z1, z2), 0)) → c4(G(d(c(z0), g(z1, z2)), d(z0, g(z1, z2))), D(c(z0), g(z1, z2)), G(z1, z2), D(z0, g(z1, z2)), G(z1, z2))
G(e(z0), e(z1)) → c5(G(z0, z1))
S tuples:
H(z0, e(z1)) → c1(H(c(z0), d(z0, z1)), D(z0, z1))
D(z0, g(z1, z2)) → c3(G(e(z1), d(z0, z2)), D(z0, z2))
D(c(z0), g(g(z1, z2), 0)) → c4(G(d(c(z0), g(z1, z2)), d(z0, g(z1, z2))), D(c(z0), g(z1, z2)), G(z1, z2), D(z0, g(z1, z2)), G(z1, z2))
G(e(z0), e(z1)) → c5(G(z0, z1))
K tuples:none
Defined Rule Symbols:
h, d, g
Defined Pair Symbols:
H, D, G
Compound Symbols:
c1, c3, c4, c5
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
H(
z0,
e(
z1)) →
c1(
H(
c(
z0),
d(
z0,
z1)),
D(
z0,
z1)) by
H(z0, e(g(0, 0))) → c1(H(c(z0), e(0)), D(z0, g(0, 0)))
H(z0, e(g(z1, z2))) → c1(H(c(z0), g(e(z1), d(z0, z2))), D(z0, g(z1, z2)))
H(c(z0), e(g(g(z1, z2), 0))) → c1(H(c(c(z0)), g(d(c(z0), g(z1, z2)), d(z0, g(z1, z2)))), D(c(z0), g(g(z1, z2), 0)))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(z0, e(z1)) → h(c(z0), d(z0, z1))
d(z0, g(0, 0)) → e(0)
d(z0, g(z1, z2)) → g(e(z1), d(z0, z2))
d(c(z0), g(g(z1, z2), 0)) → g(d(c(z0), g(z1, z2)), d(z0, g(z1, z2)))
g(e(z0), e(z1)) → e(g(z0, z1))
Tuples:
D(z0, g(z1, z2)) → c3(G(e(z1), d(z0, z2)), D(z0, z2))
D(c(z0), g(g(z1, z2), 0)) → c4(G(d(c(z0), g(z1, z2)), d(z0, g(z1, z2))), D(c(z0), g(z1, z2)), G(z1, z2), D(z0, g(z1, z2)), G(z1, z2))
G(e(z0), e(z1)) → c5(G(z0, z1))
H(z0, e(g(0, 0))) → c1(H(c(z0), e(0)), D(z0, g(0, 0)))
H(z0, e(g(z1, z2))) → c1(H(c(z0), g(e(z1), d(z0, z2))), D(z0, g(z1, z2)))
H(c(z0), e(g(g(z1, z2), 0))) → c1(H(c(c(z0)), g(d(c(z0), g(z1, z2)), d(z0, g(z1, z2)))), D(c(z0), g(g(z1, z2), 0)))
S tuples:
D(z0, g(z1, z2)) → c3(G(e(z1), d(z0, z2)), D(z0, z2))
D(c(z0), g(g(z1, z2), 0)) → c4(G(d(c(z0), g(z1, z2)), d(z0, g(z1, z2))), D(c(z0), g(z1, z2)), G(z1, z2), D(z0, g(z1, z2)), G(z1, z2))
G(e(z0), e(z1)) → c5(G(z0, z1))
H(z0, e(g(0, 0))) → c1(H(c(z0), e(0)), D(z0, g(0, 0)))
H(z0, e(g(z1, z2))) → c1(H(c(z0), g(e(z1), d(z0, z2))), D(z0, g(z1, z2)))
H(c(z0), e(g(g(z1, z2), 0))) → c1(H(c(c(z0)), g(d(c(z0), g(z1, z2)), d(z0, g(z1, z2)))), D(c(z0), g(g(z1, z2), 0)))
K tuples:none
Defined Rule Symbols:
h, d, g
Defined Pair Symbols:
D, G, H
Compound Symbols:
c3, c4, c5, c1
(5) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
D(z0, g(z1, z2)) → c3(G(e(z1), d(z0, z2)), D(z0, z2))
D(c(z0), g(g(z1, z2), 0)) → c4(G(d(c(z0), g(z1, z2)), d(z0, g(z1, z2))), D(c(z0), g(z1, z2)), G(z1, z2), D(z0, g(z1, z2)), G(z1, z2))
H(z0, e(g(0, 0))) → c1(H(c(z0), e(0)), D(z0, g(0, 0)))
H(z0, e(g(z1, z2))) → c1(H(c(z0), g(e(z1), d(z0, z2))), D(z0, g(z1, z2)))
H(c(z0), e(g(g(z1, z2), 0))) → c1(H(c(c(z0)), g(d(c(z0), g(z1, z2)), d(z0, g(z1, z2)))), D(c(z0), g(g(z1, z2), 0)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(z0, e(z1)) → h(c(z0), d(z0, z1))
d(z0, g(0, 0)) → e(0)
d(z0, g(z1, z2)) → g(e(z1), d(z0, z2))
d(c(z0), g(g(z1, z2), 0)) → g(d(c(z0), g(z1, z2)), d(z0, g(z1, z2)))
g(e(z0), e(z1)) → e(g(z0, z1))
Tuples:
G(e(z0), e(z1)) → c5(G(z0, z1))
S tuples:
G(e(z0), e(z1)) → c5(G(z0, z1))
K tuples:none
Defined Rule Symbols:
h, d, g
Defined Pair Symbols:
G
Compound Symbols:
c5
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(e(z0), e(z1)) → c5(G(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
G(e(z0), e(z1)) → c5(G(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(G(x1, x2)) = [2]x1
POL(c5(x1)) = x1
POL(e(x1)) = [1] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(z0, e(z1)) → h(c(z0), d(z0, z1))
d(z0, g(0, 0)) → e(0)
d(z0, g(z1, z2)) → g(e(z1), d(z0, z2))
d(c(z0), g(g(z1, z2), 0)) → g(d(c(z0), g(z1, z2)), d(z0, g(z1, z2)))
g(e(z0), e(z1)) → e(g(z0, z1))
Tuples:
G(e(z0), e(z1)) → c5(G(z0, z1))
S tuples:none
K tuples:
G(e(z0), e(z1)) → c5(G(z0, z1))
Defined Rule Symbols:
h, d, g
Defined Pair Symbols:
G
Compound Symbols:
c5
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))